Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2146, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459056

RESUMO

Bacteria have developed various defense mechanisms to avoid infection and killing in response to the fast evolution and turnover of viruses and other genetic parasites. Such pan-immune system (defensome) encompasses a growing number of defense lines that include well-studied innate and adaptive systems such as restriction-modification, CRISPR-Cas and abortive infection, but also newly found ones whose mechanisms are still poorly understood. While the abundance and distribution of defense systems is well-known in complete and culturable genomes, there is a void in our understanding of their diversity and richness in complex microbial communities. Here we performed a large-scale in-depth analysis of the defensomes of 7759 high-quality bacterial population genomes reconstructed from soil, marine, and human gut environments. We observed a wide variation in the frequency and nature of the defensome among large phyla, which correlated with lifestyle, genome size, habitat, and geographic background. The defensome's genetic mobility, its clustering in defense islands, and genetic variability was found to be system-specific and shaped by the bacterial environment. Hence, our results provide a detailed picture of the multiple immune barriers present in environmentally distinct bacterial communities and set the stage for subsequent identification of novel and ingenious strategies of diversification among uncultivated microbes.


Assuntos
Bactérias , Genoma Bacteriano , Humanos , Bactérias/genética , Metagenômica , Tamanho do Genoma , Sistemas CRISPR-Cas
2.
Nat Commun ; 14(1): 6233, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828003

RESUMO

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus-host network at the polar-nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/genética , Genoma Viral/genética , Ecossistema , Oceanos e Mares , Filogenia , Vírus de DNA/genética , Genômica , Vírus/genética , Eucariotos/genética
3.
Nature ; 616(7958): 783-789, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076623

RESUMO

DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.


Assuntos
Organismos Aquáticos , Vírus Gigantes , Herpesviridae , Oceanos e Mares , Filogenia , Plâncton , Animais , Ecossistema , Eucariotos/virologia , Genoma Viral/genética , Vírus Gigantes/classificação , Vírus Gigantes/genética , Herpesviridae/classificação , Herpesviridae/genética , Plâncton/virologia , Metagenômica , Metagenoma , Luz Solar , Transcrição Gênica/genética , Organismos Aquáticos/virologia
4.
Elife ; 112022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920817

RESUMO

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.


Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These 'marine plankton' are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth's oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.


Assuntos
Ecossistema , Plâncton , Genômica , Geografia , Oceanos e Mares , Plâncton/genética
5.
Nucleic Acids Res ; 50(W1): W516-W526, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35687095

RESUMO

Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Assuntos
Bactérias , Eucariotos , Biologia Marinha , Plâncton , Bactérias/genética , Eucariotos/genética , Metagenoma , Filogenia , Plâncton/genética
6.
Environ Microbiome ; 17(1): 30, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690846

RESUMO

BACKGROUND: In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. RESULTS: We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. CONCLUSIONS: By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.

7.
Nature ; 607(7917): 111-118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732736

RESUMO

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.


Assuntos
Vias Biossintéticas , Microbiota , Oceanos e Mares , Bactérias/classificação , Bactérias/genética , Vias Biossintéticas/genética , Genômica , Microbiota/genética , Família Multigênica/genética , Filogenia
8.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356891

RESUMO

Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its diversity, and its relevance across multiple organisms and environments. The unknown sequence space is exceptionally diverse, phylogenetically more conserved than the known fraction and predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a significant resource to expand our understanding of their unusual biology. Finally, by identifying a target gene of unknown function for antibiotic resistance, we demonstrate how we can enable the generation of hypotheses that can be used to augment experimental data.


It is estimated that scientists do not know what half of microbial genes actually do. When these genes are discovered in microorganisms grown in the lab or found in environmental samples, it is not possible to identify what their roles are. Many of these genes are excluded from further analyses for these reasons, meaning that the study of microbial genes tends to be limited to genes that have already been described. These limitations hinder research into microbiology, because information from newly discovered genes cannot be integrated to better understand how these organisms work. Experiments to understand what role these genes have in the microorganisms are labor-intensive, so new analytical strategies are needed. To do this, Vanni et al. developed a new framework to categorize genes with unknown roles, and a computational workflow to integrate them into traditional analyses. When this approach was applied to over 400 million microbial genes (both with known and unknown roles), it showed that the share of genes with unknown functions is only about 30 per cent, smaller than previously thought. The analysis also showed that these genes are very diverse, revealing a huge space for future research and potential applications. Combining their approach with experimental data, Vanni et al. were able to identify a gene with a previously unknown purpose that could be involved in antibiotic resistance. This system could be useful for other scientists studying microorganisms to get a more complete view of microbial systems. In future, it may also be used to analyze the genetics of other organisms, such as plants and animals.


Assuntos
Bactérias , Genoma Arqueal , Bactérias/genética , Metagenoma , Fases de Leitura Aberta
9.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150280

RESUMO

The emergence of the eukaryotic cytoskeleton is a critical yet puzzling step of eukaryogenesis. Actin and actin-related proteins (ARPs) are ubiquitous components of this cytoskeleton. The gene repertoire of the Last Eukaryotic Common Ancestor (LECA) would have therefore harbored both actin and various ARPs. Here, we report the presence and expression of actin-related genes in viral genomes (viractins) of some Imitervirales, a viral order encompassing the giant Mimiviridae. Phylogenetic analyses suggest an early recruitment of an actin-related gene by viruses from ancient protoeukaryotic hosts before the emergence of modern eukaryotes, possibly followed by a back transfer that gave rise to eukaryotic actins. This supports a coevolutionary scenario between pre-LECA lineages and their viruses, which could have contributed to the emergence of the modern eukaryotic cytoskeleton.


Assuntos
Vírus Gigantes , Actinas/genética , Eucariotos/genética , Células Eucarióticas , Evolução Molecular , Vírus Gigantes/genética , Filogenia
11.
Cell Genom ; 2(5): 100123, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36778897

RESUMO

Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their poor representation in culture collections limits our understanding of the evolutionary history and genomic underpinnings of planktonic ecosystems. Here, we used 280 billion Tara Oceans metagenomic reads from polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant and widespread eukaryotic environmental genomes ranging from 10 Mbp to 1.3 Gbp. This genomic resource covers a wide range of poorly characterized eukaryotic lineages that complement long-standing contributions from culture collections while better representing plankton in the upper layer of the oceans. We performed the first, to our knowledge, comprehensive genome-wide functional classification of abundant unicellular eukaryotic plankton, revealing four major groups connecting distantly related lineages. Neither trophic modes of plankton nor its vertical evolutionary history could completely explain the functional repertoire convergence of major eukaryotic lineages that coexisted within oceanic currents for millions of years.

12.
ISME J ; 16(4): 927-936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34697433

RESUMO

Biological nitrogen fixation contributes significantly to marine primary productivity. The current view depicts few cyanobacterial diazotrophs as the main marine nitrogen fixers. Here, we used 891 Tara Oceans metagenomes derived from surface waters of five oceans and two seas to generate a manually curated genomic database corresponding to free-living, filamentous, colony-forming, particle-attached, and symbiotic bacterial and archaeal populations. The database provides the genomic content of eight cyanobacterial diazotrophs including a newly discovered population related to known heterocystous symbionts of diatoms, as well as 40 heterotrophic bacterial diazotrophs that considerably expand the known diversity of abundant marine nitrogen fixers. These 48 populations encapsulate 92% of metagenomic signal for known nifH genes in the sunlit ocean, suggesting that the genomic characterization of the most abundant marine diazotrophs may be nearing completion. Newly identified heterotrophic bacterial diazotrophs are widespread, express their nifH genes in situ, and also occur in large planktonic size fractions where they might form aggregates that provide the low-oxygen microenvironments required for nitrogen fixation. Critically, we found heterotrophic bacterial diazotrophs to be more abundant than cyanobacterial diazotrophs in most metagenomes from the open oceans and seas, emphasizing the importance of a wide range of heterotrophic populations in the marine nitrogen balance.


Assuntos
Cianobactérias , Água do Mar , Cianobactérias/genética , Metagenoma , Nitrogênio , Fixação de Nitrogênio/genética , Oceanos e Mares , Filogenia , Água do Mar/microbiologia
13.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750267

RESUMO

Filamentous and colony-forming cells within the cyanobacterial genus Trichodesmium might account for nearly half of nitrogen fixation in the sunlit ocean, a critical mechanism that sustains plankton's primary productivity. Trichodesmium has long been portrayed as a diazotrophic genus. By means of genome-resolved metagenomics, here we reveal that nondiazotrophic Trichodesmium species not only exist but also are abundant and widespread in the open ocean, benefiting from a previously overlooked functional lifestyle to expand the biogeography of this prominent marine genus. Near-complete environmental genomes for those closely related candidate species reproducibly shared functional features including a lack of genes related to nitrogen fixation, hydrogen recycling, and hopanoid lipid production concomitant with the enrichment of nitrogen assimilation genes. Our results elucidate fieldwork observations of Trichodesmium cells fixing carbon but not nitrogen. The Black Queen hypothesis and burden of low-oxygen concentration requirements provide a rationale to explain gene loss linked to nitrogen fixation among Trichodesmium species. Disconnecting taxonomic signal for this genus from a microbial community's ability to fix nitrogen will help refine our understanding of the marine nitrogen balance. Finally, we are reminded that established links between taxonomic lineages and functional traits do not always hold true.


Assuntos
Água do Mar/microbiologia , Trichodesmium/genética , Trichodesmium/fisiologia , Carbono/metabolismo , Cianobactérias/genética , Cianobactérias/fisiologia , Genoma/genética , Metagenômica/métodos , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Oceanos e Mares
14.
Front Microbiol ; 12: 683294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163457

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) infect diverse eukaryotes and form a group of viruses with capsids encapsulating large genomes. Recent studies are increasingly revealing a spectacular array of functions encoded in their genomes, including genes for energy metabolisms, nutrient uptake, as well as cytoskeleton. Here, we report the discovery of genes homologous to myosins, the major eukaryotic motor proteins previously unrecognized in the virosphere, in environmental genomes of NCLDVs from the surface of the oceans. Phylogenetic analyses indicate that most viral myosins (named "virmyosins") belong to the Imitervirales order, except for one belonging to the Phycodnaviridae family. On the one hand, the phylogenetic positions of virmyosin-encoding Imitervirales are scattered within the Imitervirales. On the other hand, Imitervirales virmyosin genes form a monophyletic group in the phylogeny of diverse myosin sequences. Furthermore, phylogenetic trends for the virmyosin genes and viruses containing them were incongruent. Based on these results, we argue that multiple transfers of myosin homologs have occurred not only from eukaryotes to viruses but also between viruses, supposedly during co-infections of the same host. Like other viruses that use host motor proteins for their intracellular transport or motility, these viruses may use the virally encoded myosins for the intracellular trafficking of giant viral particles.

15.
Curr Biol ; 31(15): 3221-3232.e9, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102110

RESUMO

Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.


Assuntos
Diatomáceas , Alelos , Divisão Celular , Cromossomos , Variações do Número de Cópias de DNA , Diatomáceas/genética
16.
Gastroenterology ; 161(3): 940-952.e15, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111469

RESUMO

BACKGROUND & AIMS: Perturbations in the early-life gut microbiome are associated with increased risk for complex immune disorders like inflammatory bowel diseases. We previously showed that maternal antibiotic-induced gut dysbiosis vertically transmitted to offspring increases experimental colitis risk in interleukin (IL) 10 gene deficient (IL10-/-) mice, a finding that may result from the loss/lack of essential microbes needed for appropriate immunologic education early in life. Here, we aimed to identify key microbes required for proper development of the early-life gut microbiome that decrease colitis risk in genetically susceptible animals. METHODS: Metagenomic sequencing followed by reconstruction of metagenome-assembled genomes was performed on fecal samples of IL10-/- mice with and without antibiotic-induced dysbiosis to identify potential missing microbial members needed for immunologic education. One high-value target strain was then engrafted early and/or late into the gut microbiomes of IL10-/- mice with antibiotic-induced dysbiosis. RESULTS: Early-, but not late-, life engraftment of a single dominant Bacteroides strain of non-antibiotic-treated IL10-/- mice was sufficient to restore the development of the gut microbiome, promote immune tolerance, and prevent colitis in IL10-/- mice that had antibiotic-induced dysbiosis. CONCLUSIONS: Restitution of a keystone microbial strain missing in the early-life antibiotic-induced gut dysbiosis results in recovery of the microbiome, proper development of immune tolerance, and reduced risk for colitis in genetically prone hosts.


Assuntos
Bacteroides/crescimento & desenvolvimento , Colite/prevenção & controle , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-10/deficiência , Animais , Antibacterianos , Bacteroides/imunologia , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Disbiose , Fezes/microbiologia , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estudo de Prova de Conceito , Fatores de Tempo
17.
Commun Biol ; 4(1): 579, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990699

RESUMO

Salmonids are important sources of protein for a large proportion of the human population. Mycoplasma species are a major constituent of the gut microbiota of salmonids, often representing the majority of microbiota. Despite the frequent reported dominance of salmonid-related Mycoplasma species, little is known about the phylogenomic placement, functions and potential evolutionary relationships with their salmonid hosts. In this study, we utilise 2.9 billion metagenomic reads generated from 12 samples from three different salmonid host species to I) characterise and curate the first metagenome-assembled genomes (MAGs) of Mycoplasma dominating the intestines of three different salmonid species, II) establish the phylogeny of these salmonid candidate Mycoplasma species, III) perform a comprehensive pangenomic analysis of Mycoplasma, IV) decipher the putative functionalities of the salmonid MAGs and reveal specific functions expected to benefit the host. Our data provide a basis for future studies examining the composition and function of the salmonid microbiota.


Assuntos
Microbioma Gastrointestinal/genética , Genoma Bacteriano , Metagenoma , Mycoplasma/genética , Salmonidae/microbiologia , Simbiose , Animais , Filogenia , Análise de Sequência de DNA
18.
Microbiome ; 9(1): 37, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522966

RESUMO

BACKGROUND: Viruses are a significant player in many biosphere and human ecosystems, but most signals remain "hidden" in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. RESULTS: Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2's modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. CONCLUSION: With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available ( https://bitbucket.org/MAVERICLab/virsorter2 ), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse ( https://de.cyverse.org/de ). Video abstract.


Assuntos
Vírus de DNA/classificação , Genoma Viral/genética , Metagenômica , Vírus de RNA/classificação , Software , Vírus de DNA/genética , Ecossistema , Humanos , Vírus de RNA/genética
19.
iScience ; 24(1): 102002, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490910

RESUMO

The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.e., viral "shunt" and "shuttle"). In this study, we tested associations between viral community composition and CEE measured at a global scale. A regression model based on relative abundance of viral marker genes explained 67% of the variation in CEE. Viruses with high importance in the model were predicted to infect ecologically important hosts. These results are consistent with the view that the viral shunt and shuttle functions at a large scale and further imply that viruses likely act in this process in a way dependent on their hosts and ecosystem dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...